Skip to main content

Quick Start

Quick start CLI, Config, Docker

LiteLLM Server manages:

$ pip install 'litellm[proxy]'

Quick Start - LiteLLM Proxy CLI

Run the following command to start the litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

Run with --detailed_debug if you need detailed debug logs

$ litellm --model huggingface/bigcode/starcoder --detailed_debug

Test

In a new shell, run, this will make an openai.chat.completions request. Ensure you're using openai v1.0.0+

litellm --test

This will now automatically route any requests for gpt-3.5-turbo to bigcode starcoder, hosted on huggingface inference endpoints.

Supported LLMs

All LiteLLM supported LLMs are supported on the Proxy. Seel all supported llms

$ export AWS_ACCESS_KEY_ID=
$ export AWS_REGION_NAME=
$ export AWS_SECRET_ACCESS_KEY=
$ litellm --model bedrock/anthropic.claude-v2

Quick Start - LiteLLM Proxy + Config.yaml

The config allows you to create a model list and set api_base, max_tokens (all litellm params). See more details about the config here

Create a Config for LiteLLM Proxy

Example config

model_list: 
  - model_name: gpt-3.5-turbo # user-facing model alias
    litellm_params: # all params accepted by litellm.completion() - https://docs.litellm.ai/docs/completion/input
      model: azure/<your-deployment-name>
      api_base: <your-azure-api-endpoint>
      api_key: <your-azure-api-key>
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: azure/gpt-turbo-small-ca
      api_base: https://my-endpoint-canada-berri992.openai.azure.com/
      api_key: <your-azure-api-key>
  - model_name: vllm-model
    litellm_params:
      model: openai/<your-model-name>
      api_base: <your-api-base> # e.g. http://0.0.0.0:3000

Run proxy with config

litellm --config your_config.yaml

Using LiteLLM Proxy - Curl Request, OpenAI Package, Langchain

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
      "model": "gpt-3.5-turbo",
      "messages": [
        {
          "role": "user",
          "content": "what llm are you"
        }
      ]
    }
'

More Info

📖 Proxy Endpoints - Swagger Docs

  • POST /chat/completions - chat completions endpoint to call 100+ LLMs
  • POST /completions - completions endpoint
  • POST /embeddings - embedding endpoint for Azure, OpenAI, Huggingface endpoints
  • GET /models - available models on server
  • POST /key/generate - generate a key to access the proxy

Using with OpenAI compatible projects

Set base_url to the LiteLLM Proxy server

import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Debugging Proxy

Events that occur during normal operation

litellm --model gpt-3.5-turbo --debug

Detailed information

litellm --model gpt-3.5-turbo --detailed_debug

Set Debug Level using env variables

Events that occur during normal operation

export LITELLM_LOG=INFO

Detailed information

export LITELLM_LOG=DEBUG

No Logs

export LITELLM_LOG=None