Slack - Logging LLM Input/Output, Exceptions
We want to learn how we can make the callbacks better! Meet the LiteLLM founders or join our discord
Pre-Requisites
Step 1
pip install litellm
Step 2
Get a slack webhook url from https://api.slack.com/messaging/webhooks
Quick Start
Create a custom Callback to log to slack
We create a custom callback, to log to slack webhooks, see custom callbacks on litellm
def send_slack_alert(
kwargs,
completion_response,
start_time,
end_time,
):
print(
"in custom slack callback func"
)
import requests
import json
# Define the Slack webhook URL
# get it from https://api.slack.com/messaging/webhooks
slack_webhook_url = os.environ['SLACK_WEBHOOK_URL'] # "https://hooks.slack.com/services/<>/<>/<>"
# Remove api_key from kwargs under litellm_params
if kwargs.get('litellm_params'):
kwargs['litellm_params'].pop('api_key', None)
if kwargs['litellm_params'].get('metadata'):
kwargs['litellm_params']['metadata'].pop('deployment', None)
# Remove deployment under metadata
if kwargs.get('metadata'):
kwargs['metadata'].pop('deployment', None)
# Prevent api_key from being logged
if kwargs.get('api_key'):
kwargs.pop('api_key', None)
# Define the text payload, send data available in litellm custom_callbacks
text_payload = f"""LiteLLM Logging: kwargs: {str(kwargs)}\n\n, response: {str(completion_response)}\n\n, start time{str(start_time)} end time: {str(end_time)}
"""
payload = {
"text": text_payload
}
# Set the headers
headers = {
"Content-type": "application/json"
}
# Make the POST request
response = requests.post(slack_webhook_url, json=payload, headers=headers)
# Check the response status
if response.status_code == 200:
print("Message sent successfully to Slack!")
else:
print(f"Failed to send message to Slack. Status code: {response.status_code}")
print(response.json())
Pass callback to LiteLLM
litellm.success_callback = [send_slack_alert]
import litellm
litellm.success_callback = [send_slack_alert] # log success
litellm.failure_callback = [send_slack_alert] # log exceptions
# this will raise an exception
response = litellm.completion(
model="gpt-2",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
]
)
Support & Talk to Founders
- Schedule Demo 👋
- Community Discord 💭
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai