Sentry - Log LLM Exceptions
Sentry provides error monitoring for production. LiteLLM can add breadcrumbs and send exceptions to Sentry with this integration
Track exceptions for:
- litellm.completion() - completion()for 100+ LLMs
- litellm.acompletion() - async completion()
- Streaming completion() & acompletion() calls
Usage
Set SENTRY_DSN & callback
import litellm, os
os.environ["SENTRY_DSN"] = "your-sentry-url"
litellm.failure_callback=["sentry"]
Sentry callback with completion
import litellm
from litellm import completion
litellm.input_callback=["sentry"] # adds sentry breadcrumbing
litellm.failure_callback=["sentry"] # [OPTIONAL] if you want litellm to capture -> send exception to sentry
import os
os.environ["SENTRY_DSN"] = "your-sentry-url"
os.environ["OPENAI_API_KEY"] = "your-openai-key"
# set bad key to trigger error
api_key="bad-key"
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey!"}], stream=True, api_key=api_key)
print(response)
Redacting Messages, Response Content from Sentry Logging
Set litellm.turn_off_message_logging=True
This will prevent the messages and responses from being logged to sentry, but request metadata will still be logged.
Let us know if you need any additional options from Sentry.