Skip to main content

Custom Callbacks

For PROXY Go Here

Callback Class

You can create a custom callback class to precisely log events as they occur in litellm.

import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion

class MyCustomHandler(CustomLogger):
    def log_pre_api_call(self, model, messages, kwargs): 
        print(f"Pre-API Call")
    
    def log_post_api_call(self, kwargs, response_obj, start_time, end_time): 
        print(f"Post-API Call")
    
    def log_stream_event(self, kwargs, response_obj, start_time, end_time):
        print(f"On Stream")
        
    def log_success_event(self, kwargs, response_obj, start_time, end_time): 
        print(f"On Success")

    def log_failure_event(self, kwargs, response_obj, start_time, end_time): 
        print(f"On Failure")
    
    #### ASYNC #### - for acompletion/aembeddings
    
    async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
        print(f"On Async Streaming")

    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
        print(f"On Async Success")

    async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
        print(f"On Async Failure")

customHandler = MyCustomHandler()

litellm.callbacks = [customHandler]

## sync 
response = completion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi 👋 - i'm openai"}],
                              stream=True)
for chunk in response: 
    continue


## async
import asyncio 

def async completion():
    response = await acompletion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi 👋 - i'm openai"}],
                              stream=True)
    async for chunk in response: 
        continue
asyncio.run(completion())

Callback Functions

If you just want to log on a specific event (e.g. on input) - you can use callback functions.

You can set custom callbacks to trigger for:

  • litellm.input_callback - Track inputs/transformed inputs before making the LLM API call
  • litellm.success_callback - Track inputs/outputs after making LLM API call
  • litellm.failure_callback - Track inputs/outputs + exceptions for litellm calls

Defining a Custom Callback Function

Create a custom callback function that takes specific arguments:

def custom_callback(
    kwargs,                 # kwargs to completion
    completion_response,    # response from completion
    start_time, end_time    # start/end time
):
    # Your custom code here
    print("LITELLM: in custom callback function")
    print("kwargs", kwargs)
    print("completion_response", completion_response)
    print("start_time", start_time)
    print("end_time", end_time)

Setting the custom callback function

import litellm
litellm.success_callback = [custom_callback]

Using Your Custom Callback Function

import litellm
from litellm import completion

# Assign the custom callback function
litellm.success_callback = [custom_callback]

response = completion(
    model="gpt-3.5-turbo",
    messages=[
        {
            "role": "user",
            "content": "Hi 👋 - i'm openai"
        }
    ]
)

print(response)

Async Callback Functions

We recommend using the Custom Logger class for async.

from litellm.integrations.custom_logger import CustomLogger
from litellm import acompletion 

class MyCustomHandler(CustomLogger):
    #### ASYNC #### 
    
    async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
        print(f"On Async Streaming")

    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
        print(f"On Async Success")

    async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
        print(f"On Async Failure")

import asyncio 
customHandler = MyCustomHandler()

litellm.callbacks = [customHandler]

def async completion():
    response = await acompletion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi 👋 - i'm openai"}],
                              stream=True)
    async for chunk in response: 
        continue
asyncio.run(completion())

Functions

If you just want to pass in an async function for logging.

LiteLLM currently supports just async success callback functions for async completion/embedding calls.

import asyncio, litellm 

async def async_test_logging_fn(kwargs, completion_obj, start_time, end_time):
    print(f"On Async Success!")

async def test_chat_openai():
    try:
        # litellm.set_verbose = True
        litellm.success_callback = [async_test_logging_fn]
        response = await litellm.acompletion(model="gpt-3.5-turbo",
                              messages=[{
                                  "role": "user",
                                  "content": "Hi 👋 - i'm openai"
                              }],
                              stream=True)
        async for chunk in response: 
            continue
    except Exception as e:
        print(e)
        pytest.fail(f"An error occurred - {str(e)}")

asyncio.run(test_chat_openai())

We're actively trying to expand this to other event types. Tell us if you need this!

What's in kwargs?

Notice we pass in a kwargs argument to custom callback.

def custom_callback(
    kwargs,                 # kwargs to completion
    completion_response,    # response from completion
    start_time, end_time    # start/end time
):
    # Your custom code here
    print("LITELLM: in custom callback function")
    print("kwargs", kwargs)
    print("completion_response", completion_response)
    print("start_time", start_time)
    print("end_time", end_time)

This is a dictionary containing all the model-call details (the params we receive, the values we send to the http endpoint, the response we receive, stacktrace in case of errors, etc.).

This is all logged in the model_call_details via our Logger.

Here's exactly what you can expect in the kwargs dictionary:

### DEFAULT PARAMS ### 
"model": self.model,
"messages": self.messages,
"optional_params": self.optional_params, # model-specific params passed in
"litellm_params": self.litellm_params, # litellm-specific params passed in (e.g. metadata passed to completion call)
"start_time": self.start_time, # datetime object of when call was started

### PRE-API CALL PARAMS ### (check via kwargs["log_event_type"]="pre_api_call")
"input" = input # the exact prompt sent to the LLM API
"api_key" = api_key # the api key used for that LLM API 
"additional_args" = additional_args # any additional details for that API call (e.g. contains optional params sent)

### POST-API CALL PARAMS ### (check via kwargs["log_event_type"]="post_api_call")
"original_response" = original_response # the original http response received (saved via response.text)

### ON-SUCCESS PARAMS ### (check via kwargs["log_event_type"]="successful_api_call")
"complete_streaming_response" = complete_streaming_response # the complete streamed response (only set if `completion(..stream=True)`)
"end_time" = end_time # datetime object of when call was completed

### ON-FAILURE PARAMS ### (check via kwargs["log_event_type"]="failed_api_call")
"exception" = exception # the Exception raised
"traceback_exception" = traceback_exception # the traceback generated via `traceback.format_exc()`
"end_time" = end_time # datetime object of when call was completed

Cache hits

Cache hits are logged in success events as kwarg["cache_hit"].

Here's an example of accessing it:

import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion, Cache

class MyCustomHandler(CustomLogger):
  async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): 
      print(f"On Success")
      print(f"Value of Cache hit: {kwargs['cache_hit']"})

async def test_async_completion_azure_caching():
  customHandler_caching = MyCustomHandler()
  litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
  litellm.callbacks = [customHandler_caching]
  unique_time = time.time()
  response1 = await litellm.acompletion(model="azure/chatgpt-v-2",
                          messages=[{
                              "role": "user",
                              "content": f"Hi 👋 - i'm async azure {unique_time}"
                          }],
                          caching=True)
  await asyncio.sleep(1)
  print(f"customHandler_caching.states pre-cache hit: {customHandler_caching.states}")
  response2 = await litellm.acompletion(model="azure/chatgpt-v-2",
                          messages=[{
                              "role": "user",
                              "content": f"Hi 👋 - i'm async azure {unique_time}"
                          }],
                          caching=True)
  await asyncio.sleep(1) # success callbacks are done in parallel
  print(f"customHandler_caching.states post-cache hit: {customHandler_caching.states}")
  assert len(customHandler_caching.errors) == 0
  assert len(customHandler_caching.states) == 4 # pre, post, success, success

Get complete streaming response

LiteLLM will pass you the complete streaming response in the final streaming chunk as part of the kwargs for your custom callback function.

# litellm.set_verbose = False
        def custom_callback(
            kwargs,                 # kwargs to completion
            completion_response,    # response from completion
            start_time, end_time    # start/end time
        ):
            # print(f"streaming response: {completion_response}")
            if "complete_streaming_response" in kwargs: 
                print(f"Complete Streaming Response: {kwargs['complete_streaming_response']}")
        
        # Assign the custom callback function
        litellm.success_callback = [custom_callback]

        response = completion(model="claude-instant-1", messages=messages, stream=True)
        for idx, chunk in enumerate(response): 
            pass

Log additional metadata

LiteLLM accepts a metadata dictionary in the completion call. You can pass additional metadata into your completion call via completion(..., metadata={"key": "value"}).

Since this is a litellm-specific param, it's accessible via kwargs["litellm_params"]

from litellm import completion
import os, litellm

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

messages = [{ "content": "Hello, how are you?","role": "user"}]

def custom_callback(
    kwargs,                 # kwargs to completion
    completion_response,    # response from completion
    start_time, end_time    # start/end time
):
    print(kwargs["litellm_params"]["metadata"])
    

# Assign the custom callback function
litellm.success_callback = [custom_callback]

response = litellm.completion(model="gpt-3.5-turbo", messages=messages, metadata={"hello": "world"})

Examples

Custom Callback to track costs for Streaming + Non-Streaming

By default, the response cost is accessible in the logging object via kwargs["response_cost"] on success (sync + async)


# Step 1. Write your custom callback function
def track_cost_callback(
    kwargs,                 # kwargs to completion
    completion_response,    # response from completion
    start_time, end_time    # start/end time
):
    try:
        response_cost = kwargs["response_cost"] # litellm calculates response cost for you
        print("regular response_cost", response_cost)
    except:
        pass

# Step 2. Assign the custom callback function
litellm.success_callback = [track_cost_callback]

# Step 3. Make litellm.completion call
response = completion(
    model="gpt-3.5-turbo",
    messages=[
        {
            "role": "user",
            "content": "Hi 👋 - i'm openai"
        }
    ]
)

print(response)

Custom Callback to log transformed Input to LLMs

def get_transformed_inputs(
    kwargs,
):
    params_to_model = kwargs["additional_args"]["complete_input_dict"]
    print("params to model", params_to_model)

litellm.input_callback = [get_transformed_inputs]

def test_chat_openai():
    try:
        response = completion(model="claude-2",
                              messages=[{
                                  "role": "user",
                                  "content": "Hi 👋 - i'm openai"
                              }])

        print(response)

    except Exception as e:
        print(e)
        pass

Output

params to model {'model': 'claude-2', 'prompt': "\n\nHuman: Hi 👋 - i'm openai\n\nAssistant: ", 'max_tokens_to_sample': 256}

Custom Callback to write to Mixpanel

import mixpanel
import litellm
from litellm import completion

def custom_callback(
    kwargs,                 # kwargs to completion
    completion_response,    # response from completion
    start_time, end_time    # start/end time
):
    # Your custom code here
    mixpanel.track("LLM Response", {"llm_response": completion_response})


# Assign the custom callback function
litellm.success_callback = [custom_callback]

response = completion(
    model="gpt-3.5-turbo",
    messages=[
        {
            "role": "user",
            "content": "Hi 👋 - i'm openai"
        }
    ]
)

print(response)