Skip to main content

Prompt Formatting

LiteLLM automatically translates the OpenAI ChatCompletions prompt format, to other models. You can control this by setting a custom prompt template for a model as well.

Huggingface Models

LiteLLM supports Huggingface Chat Templates, and will automatically check if your huggingface model has a registered chat template (e.g. Mistral-7b).

For popular models (e.g. meta-llama/llama2), we have their templates saved as part of the package.

Stored Templates

Model NameWorks for ModelsCompletion Call
mistralai/Mistral-7B-Instruct-v0.1mistralai/Mistral-7B-Instruct-v0.1completion(model='huggingface/mistralai/Mistral-7B-Instruct-v0.1', messages=messages, api_base="your_api_endpoint")
meta-llama/Llama-2-7b-chatAll meta-llama llama2 chat modelscompletion(model='huggingface/meta-llama/Llama-2-7b', messages=messages, api_base="your_api_endpoint")
tiiuae/falcon-7b-instructAll falcon instruct modelscompletion(model='huggingface/tiiuae/falcon-7b-instruct', messages=messages, api_base="your_api_endpoint")
mosaicml/mpt-7b-chatAll mpt chat modelscompletion(model='huggingface/mosaicml/mpt-7b-chat', messages=messages, api_base="your_api_endpoint")
codellama/CodeLlama-34b-Instruct-hfAll codellama instruct modelscompletion(model='huggingface/codellama/CodeLlama-34b-Instruct-hf', messages=messages, api_base="your_api_endpoint")
WizardLM/WizardCoder-Python-34B-V1.0All wizardcoder modelscompletion(model='huggingface/WizardLM/WizardCoder-Python-34B-V1.0', messages=messages, api_base="your_api_endpoint")
Phind/Phind-CodeLlama-34B-v2All phind-codellama modelscompletion(model='huggingface/Phind/Phind-CodeLlama-34B-v2', messages=messages, api_base="your_api_endpoint")

Jump to code

Format Prompt Yourself

You can also format the prompt yourself. Here's how:

import litellm
# Create your own custom prompt template 
litellm.register_prompt_template(
	    model="togethercomputer/LLaMA-2-7B-32K",
        initial_prompt_value="You are a good assistant" # [OPTIONAL]
	    roles={
            "system": {
                "pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
                "post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
            },
            "user": { 
                "pre_message": "[INST] ", # [OPTIONAL]
                "post_message": " [/INST]" # [OPTIONAL]
            }, 
            "assistant": {
                "pre_message": "\n" # [OPTIONAL]
                "post_message": "\n" # [OPTIONAL]
            }
        }
        final_prompt_value="Now answer as best you can:" # [OPTIONAL]
)

def test_huggingface_custom_model():
    model = "huggingface/togethercomputer/LLaMA-2-7B-32K"
    response = completion(model=model, messages=messages, api_base="https://my-huggingface-endpoint")
    print(response['choices'][0]['message']['content'])
    return response

test_huggingface_custom_model()

This is currently supported for Huggingface, TogetherAI, Ollama, and Petals.

Other providers either have fixed prompt templates (e.g. Anthropic), or format it themselves (e.g. Replicate). If there's a provider we're missing coverage for, let us know!

All Providers

Here's the code for how we format all providers. Let us know how we can improve this further

ProviderModel NameCode
Anthropicclaude-instant-1, claude-instant-1.2, claude-2Code
OpenAI Text Completiontext-davinci-003, text-curie-001, text-babbage-001, text-ada-001, babbage-002, davinci-002,Code
Replicateall model names starting with replicate/Code
Coherecommand-nightly, command, command-light, command-medium-beta, command-xlarge-beta, command-r-plusCode
Huggingfaceall model names starting with huggingface/Code
OpenRouterall model names starting with openrouter/Code
AI21j2-mid, j2-light, j2-ultraCode
VertexAItext-bison, text-bison@001, chat-bison, chat-bison@001, chat-bison-32k, code-bison, code-bison@001, code-gecko@001, code-gecko@latest, codechat-bison, codechat-bison@001, codechat-bison-32kCode
Bedrockall model names starting with bedrock/Code
Sagemakersagemaker/jumpstart-dft-meta-textgeneration-llama-2-7bCode
TogetherAIall model names starting with together_ai/Code
AlephAlphaall model names starting with aleph_alpha/Code
Palmall model names starting with palm/Code
NLP Cloudall model names starting with palm/Code
Petalsall model names starting with petals/Code